Zum Hauptinhalt springen

Alteration of diet microbiota limits the experimentally evolved immune priming response in flour beetles, but not pathogen resistance.

Prakash, A ; Agashe, D ; et al.
In: Journal of evolutionary biology, Jg. 36 (2023-12-01), Heft 12, S. 1745
academicJournal

Titel:
Alteration of diet microbiota limits the experimentally evolved immune priming response in flour beetles, but not pathogen resistance.
Autor/in / Beteiligte Person: Prakash, A ; Agashe, D ; Khan, I
Zeitschrift: Journal of evolutionary biology, Jg. 36 (2023-12-01), Heft 12, S. 1745
Veröffentlichung: January 2024- : [Oxford] : Oxford University Press ; <i>Original Publication</i>: [Basel, Switzerland : Birkhäuser Verlag, c1988-, 2023
Medientyp: academicJournal
ISSN: 1420-9101 (electronic)
DOI: 10.1111/jeb.14213
Schlagwort:
  • Animals
  • Flour
  • Triticum
  • Diet
  • Coleoptera
  • Bacillus thuringiensis physiology
  • Tribolium physiology
  • Microbiota
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Evol Biol] 2023 Dec; Vol. 36 (12), pp. 1745-1752. <i>Date of Electronic Publication: </i>2023 Sep 01.
  • MeSH Terms: Coleoptera* ; Bacillus thuringiensis* / physiology ; Tribolium* / physiology ; Microbiota* ; Animals ; Flour ; Triticum ; Diet
  • References: Agarwal, A., & Agashe, D. (2020). The red flour beetle Tribolium castaneum: A model for host-microbiome interactions. PLoS One, 15, e0239051. https://doi.org/10.1371/journal.pone.0239051. ; Bagchi, B., Seal, S., Raina, M., Basu, D., & Khan, I. (2021). Carcass scavenging relaxes chemical -driven female interference competition in flour beetles. The American Naturalist, 199(1), E1-E14. https://doi.org/10.1086/717250. ; Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157, 121-141. https://doi.org/10.1016/j.cell.2014.03.011. ; Caccia, S., Di Lelio, I., La Storia, A., Marinelli, A., Varricchio, P., Franzetti, E., Banyuls, N., Tettamanti, G., Casartelli, M., Giordana, B., Ferré, J., Gigliotti, S., Ercolini, D., & Pennacchio, F. (2016). Midgut microbiota and host immunocompetence underlie bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences, 113, 9486-9491. https://doi.org/10.1073/pnas.1521741113. ; Cherif, A., Rezgui, W., Raddadi, N., Daffonchio, D., & Boudabous, A. (2008). Characterization and partial purification of entomocin 110, a newly identified bacteriocin from bacillus thuringiensis subsp. Entomocidus HD110. Microbiological Research, 163, 684-692. https://doi.org/10.1016/j.micres.2006.10.005. ; Chudnovskiy, A., Mortha, A., Kana, V., Kennard, A., Ramirez, J. D., Rahman, A., Remark, R., Mogno, I., Ng, R., Gnjatic, S., Amir, E. D., Solovyov, A., Greenbaum, B., Clemente, J., Faith, J., Belkaid, Y., Grigg, M. E., & Merad, M. (2016). Host-protozoan interactions protect from mucosal infections through activation of the Inflammasome. Cell, 167, 444-456.e14. https://doi.org/10.1016/j.cell.2016.08.076. ; Deans, C., Sword, G., & Behmer, S. (2016). Nutrition as a neglected factor in insect herbivore susceptibility to Bt toxins. Current Opinion in Insect Science, Pests and Resistance * Behavioural Ecology, 15, 97-103. https://doi.org/10.1016/j.cois.2016.04.005. ; Dillon, R. J., & Dillon, V. M. (2003). The gut bacteria of insects: Nonpathogenic interactions. Annual Review of Entomology, 49, 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416. ; Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37, 699-735. https://doi.org/10.1111/1574-6976.12025. ; Ferro, K., Peuß, R., Yang, W., Rosenstiel, P., Schulenburg, H., & Kurtz, J. (2019). Experimental evolution of immunological specificity. Proceedings of the National Academy of Sciences USA, 116, 20598-20604. https://doi.org/10.1073/pnas.1904828116. ; Freitak, D., Wheat, C. W., Heckel, D. G., & Vogel, H. (2007). Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biology, 5, 56. https://doi.org/10.1186/1741-7007-5-56. ; Futo, M., Armitage, S. A., & Kurtz, J. (2015). Microbiota plays a role in oral immune priming in Tribolium castaneum. Front Microbiol, 6, 1383. https://doi.org/10.3389/fmicb.2015.01383. ; Gould, A. L., Zhang, V., Lamberti, L., Jones, E. W., Obadia, B., Korasidis, N., Gavryushkin, A., Carlson, J. M., Beerenwinkel, N., & Ludington, W. B. (2018). Microbiome interactions shape host fitness. Proceedings of the National Academy of Sciences, 115, E11951-E11960. https://doi.org/10.1073/pnas.1809349115. ; Hoang, K. L., & King, K. C. (2022). Symbiont-mediated immune priming in animals through an evolutionary lens. Microbiology, 168, 8. https://doi.org/10.1099/mic.0.001181. ; Karimi, K., Inman, M. D., Bienenstock, J., & Forsythe, P. (2009). Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. American Journal of Respiratory and Critical Care Medicine, 179, 186-193. https://doi.org/10.1164/rccm.200806-951OC. ; Khan, I., Prakash, A., & Agashe, D. (2016). Divergent immune priming responses across flour beetle life stages and populations. Ecology and Evolution, 6, 7847-7855. https://doi.org/10.1002/ece3.2532. ; Khan, I., Prakash, A., & Agashe, D. (2017). Experimental evolution of insect immune memory versus pathogen resistance. Proceedings Biological Sciences, 284, 20171583. https://doi.org/10.1098/rspb.2017.1583. ; Khan, I., Prakash, A., & Agashe, D. (2019). Pathogen susceptibility and fitness costs explain variation in immune priming across natural populations of flour beetles. The Journal of Animal Ecology, 88, 1332-1342. https://doi.org/10.1111/1365-2656.13030. ; Khan, I., Prakash, A., Issar, S., Umarani, M., Sasidharan, R., Masagalli, J. N., Lama, P., Venkatesan, R., & Agashe, D. (2018). Female density-dependent chemical warfare underlies fitness effects of group sex ratio in flour beetles. The American Naturalist, 191, 306-317. https://doi.org/10.1086/695806. ; Knudson, C., Geyer, C. J., & Benso, S. (2022). Package ‘glmm’. ; Korša, A., Lo, L. K., Gandhi, S., Bang, C., & Kurtz, J. (2022). Oral immune priming treatment alters microbiome composition in the red flour beetle Tribolium castaneum. Frontiers in Microbiology, 13, 793143. https://doi.org/10.3389/fmicb.2022.793143. ; Kostic, A. D., Xavier, R. J., & Gevers, D. (2014). The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology, 146, 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009. ; Kwong, W. K., Mancenido, A. L., & Moran, N. A. (2013). Immune system stimulation by the native gut microbiota of honey bees. Royal Society Open Science, 4, 170003. https://doi.org/10.1098/rsos.170003. ; Lee, Y. K., & Mazmanian, S. K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 330, 1768-1773. https://doi.org/10.1126/science.1195568. ; Li, S., De Mandal, S., Xu, X., & Jin, F. (2020). The tripartite interaction of host immunity-bacillus thuringiensis infection-gut microbiota. Toxins, 12, 514. https://doi.org/10.3390/toxins12080514. ; Mayer, A., Mora, T., Rivoire, O., & Walczak, A. M. (2016). Diversity of immune strategies explained by adaptation to pathogen statistics. Proceedings of the National Academy of Sciences, 113, 8630-8635. https://doi.org/10.1073/pnas.1600663113. ; Mazmanian, S. K., Cui, H. L., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122, 107-118. https://doi.org/10.1016/j.cell.2005.05.007. ; McLaren, M. R., & Callahan, B. J. (2020). Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190592. https://doi.org/10.1098/rstb.2019.0592. ; Muhammad, A., Habineza, P., Ji, T., Hou, Y., & Shi, Z. (2019). Intestinal microbiota confer protection by priming the immune system of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Frontiers in Physiology, 10, 1303. https://doi.org/10.3389/fphys.2019.01303. ; Orozco-Flores, A. A., Valadez-Lira, J. A., Oppert, B., Gomez-Flores, R., Tamez-Guerra, R., Rodríguez-Padilla, C., & Tamez-Guerra, P. (2017). Regulation by gut bacteria of immune response, bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. Journal of Insect Physiology, 98, 275-283. https://doi.org/10.1016/j.jinsphys.2017.01.020. ; Paddock, K. J., Pereira, A. E., Finke, D. L., Ericsson, A. C., Hibbard, B. E., & Shelby, K. S. (2021). Host resistance to bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Molecular Ecology, 30, 5438-5453. https://doi.org/10.1111/mec.15875. ; Prakash, A., Agashe, D., & Khan, I. (2022). The costs and benefits of basal infection resistance vs immune priming responses in an insect. Developmental & Comparative Immunology, 126, 104261. https://doi.org/10.1016/j.dci.2021.104261. ; Prakash, A., & Khan, I. (2022). Why do insects evolve immune priming? A search for crossroads. Developmental & Comparative Immunology, 126, 104246. https://doi.org/10.1016/j.dci.2021.104246. ; Seal, S., Dharmarajan, G., & Khan, I. (2021). Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm. Elife, 10, e68874. https://doi.org/10.7554/eLife.68874. ; Tetreau, G., Grizard, S., Patil, C. D., Tran, F.-H., Tran Van, V., Stalinski, R., Laporte, F., Mavingui, P., Després, L., & Valiente Moro, C. (2018). Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with bacillus thuringiensis israelensis. Parasites & Vectors, 11, 121. https://doi.org/10.1186/s13071-018-2741-8. ; Thaiss, C. A., Zmora, N., Levy, M., & Elinav, E. (2016). The microbiome and innate immunity. Nature, 535, 65-74. https://doi.org/10.1038/nature18847. ; Therneau, T. (2015). Mixed effects cox models, in: Mixed effects cox models. CRAN repository. ; Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30, 492-506. https://doi.org/10.1038/s41422-020-0332-7.
  • Grant Information: ECR/2017/003370 Science and Engineering Research Board; IA/I/17/1/503091 The DBT Wellcome Trust India Alliance; IA/I/20/1/504930 The Wellcome Trust DBT India Alliance; Project695IdentificationNo.RTI4006 Department of Atomic Energy
  • Contributed Indexing: Keywords: basal infection response; experimental evolution; fitness effects; immune priming; microbiome
  • Entry Date(s): Date Created: 20230902 Date Completed: 20231221 Latest Revision: 20231221
  • Update Code: 20231221

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -