Zum Hauptinhalt springen

Tachinid parasitoid Exorista japonica affects the utilization of diet by changing gut microbial composition in the silkworm, Bombyx mori.

Li, F ; Zhu, Q ; et al.
In: Archives of insect biochemistry and physiology, Jg. 113 (2023-06-01), Heft 2, S. e22011
academicJournal

Titel:
Tachinid parasitoid Exorista japonica affects the utilization of diet by changing gut microbial composition in the silkworm, Bombyx mori.
Autor/in / Beteiligte Person: Li, F ; Zhu, Q ; Dai, M ; Shu, Q ; Li, X ; Guo, X ; Wang, Y ; Wei, J ; Liu, W ; Dai, Y ; Li, B
Zeitschrift: Archives of insect biochemistry and physiology, Jg. 113 (2023-06-01), Heft 2, S. e22011
Veröffentlichung: New York, NY : Wiley ; <i>Original Publication</i>: New York : Alan R. Liss, c1983-, 2023
Medientyp: academicJournal
ISSN: 1520-6327 (electronic)
DOI: 10.1002/arch.22011
Schlagwort:
  • Animals
  • Bacteria
  • Diet
  • Bombyx metabolism
  • Gastrointestinal Microbiome
  • Diptera
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Arch Insect Biochem Physiol] 2023 Jun; Vol. 113 (2), pp. e22011. <i>Date of Electronic Publication: </i>2023 Mar 20.
  • MeSH Terms: Bombyx* / metabolism ; Gastrointestinal Microbiome* ; Diptera* ; Animals ; Bacteria ; Diet
  • References: Anand, A.A.P., Vennison, S.J., Sankar, S.G., Prabhu, D.I.G., Vasan, P.T., Raghuraman, T. et al. (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Science, 10, 1-20. Available from: https://doi.org/10.1673/031.010.10701. ; Benassi, V., Coustau, C. & Carton, Y. (2000) Insect immunity: a genetic factor (hrtp) is essential for antibacterial peptide expression in Drosophila after infection by parasitoid wasps. Archives of Insect Biochemistry and Physiology, 43(2), 64-71. Available from: https://doi.org/10.1002/(SICI)1520-6327(200002)43:2<64::AID-ARCH2>3.0.CO;2-I. ; Brivio, M. & Mastore, M. (2018) Nematobacterial complexes and insect hosts: different weapons for the same war. Insects, 9(3), 117. Available from: https://doi.org/10.3390/insects9030117. ; Broderick, N.A., Raffa, K.F. & Handelsman, J. (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15196-15199. Available from: https://doi.org/10.1073/pnas.0604865103. ; Caccia, S., Di Lelio, I., La Storia, A., Marinelli, A., Varricchio, P., Franzetti, E. et al. (2016) Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences of the United States of America, 113(34), 9486-9491. Available from: https://doi.org/10.1073/pnas.1521741113. ; Cançado, F.C., Valério, A.A., Marana, S.R. & Barbosa, J.A.R.G. (2007) The crystal structure of a lysozyme c from housefly Musca domestica, the first structure of a digestive lysozyme. Journal of Structural Biology, 160(1), 83-92. Available from: https://doi.org/10.1016/j.jsb.2007.07.008. ; Castillo, J.C., Reynolds, S.E. & Eleftherianos, I. (2011) Insect immune responses to nematode parasites. Trends in Parasitology, 27(12), 537-547. Available from: https://doi.org/10.1016/j.pt.2011.09.001. ; Cavichiolli de Oliveira, N. & Cônsoli, F.L. (2020) Beyond host regulation: changes in gut microbiome of permissive and non-permissive hosts following parasitization by the wasp Cotesia flavipes. FEMS Microbiology Ecology, 96(2), fiz206. Available from: https://doi.org/10.1093/femsec/fiz206. ; Chen, Y., Liu, X.G., Wang, J., Zhao, J., Lu, Z.X. & Liu, Y.H. (2016) Cotesia ruficrus (Hymenoptera: Braconidae) parasitizing Cnaphalocrocis medinalis (Lepidoptera: Pyralidae): developmental interactions and food utilization efficiency of hosts. Journal of Economic Entomology, 109(2), 588-593. Available from: https://doi.org/10.1093/jee/tov405. ; Consoli, F.L. & Vinson, S.B. (2004) Wing morph development and reproduction of the ectoparasitoid Melittobia digitata: nutritional and hormonal effects. Entomologia Experimentalis et Applicata, 112(1), 47-55. Available from: https://doi.org/10.1111/j.0013-8703.2004.00183.x. ; Dai, M., Yang, J., Liu, X., Gu, H., Li, F., Li, B. et al. (2022) Parasitism by the tachinid parasitoid Exorista japonica leads to suppression of basal metabolism and activation of immune response in the host Bombyx mori. Insects, 13(9), 792. Available from: https://doi.org/10.3390/insects13090792. ; Dai, M.L., Ye, W.T., Jiang, X.J., Feng, P., Zhu, Q.Y., Sun, H.N. et al. (2022) Effect of tachinid parasitoid Exorista japonica on the larval development and pupation of the host silkworm Bombyx mori. Frontiers in Physiology, 13, 824203. Available from: https://doi.org/10.3389/fphys.2022.824203. ; Dziedziech, A., Shivankar, S. & Theopold, U. (2020) Drosophila melanogaster responses against entomopathogenic nematodes: focus on hemolymph clots. Insects, 11(1), 62. Available from: https://doi.org/10.3390/insects11010062. ; Eichler, S. & Schaub, G.A. (2002) Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Experimental Parasitology, 100(1), 17-27. Available from: https://doi.org/10.1006/expr.2001.4653. ; Endt, K., Stecher, B., Chaffron, S., Slack, E., Tchitchek, N., Benecke, A. et al. (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathogens, 6(9), e1001097. Available from: https://doi.org/10.1371/journal.ppat.1001097. ; Engel, P. & Moran, N.A. (2013) The gut microbiota of insects-diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699-735. Available from: https://doi.org/10.1111/1574-6976.12025. ; Figueiredo, M.B., Genta, F.A., Garcia, E.S. & Azambuja, P. (2008) Lipid mediators and vector infection: Trypanosoma rangeli inhibits Rhodnius prolixus hemocyte phagocytosis by modulation of phospholipase A2 and PAF-acetylhydrolase activities. Journal of Insect Physiology, 54(12), 1528-1537. Available from: https://doi.org/10.1016/j.jinsphys.2008.08.013. ; Fredensborg, B.L., Fossdal Í Kálvalíð, I., Johannesen, T.B., Stensvold, C.R., Nielsen, H.V. & Kapel, C.M.O. (2020) Parasites modulate the gut-microbiome in insects: a proof-of-concept study. PLoS One, 15(1), e0227561. Available from: https://doi.org/10.1371/journal.pone.0227561. ; Gandotra, S., Kumar, A., Naga, K., Bhuyan, P.M., Gogoi, D.K., Sharma, K. et al. (2018) Bacterial community structure and diversity in the gut of the muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae), from India: diversity of gut bacteria in Antheraea assamensis. Insect Molecular Biology, 27(5), 603-619. Available from: https://doi.org/10.1111/imb.12495. ; Gao, X., Niu, R., Zhu, X., Wang, L., Ji, J., Niu, L. et al. (2021) Characterization and comparison of the bacterial microbiota of Lysiphlebia japonica parasitioid wasps and their aphid host Aphis gosypii. Pest Management Science, 77(6), 2710-2718. Available from: https://doi.org/10.1002/ps.6299. ; Garcia, E.S., Machado, E.M.M. & Azambuja, P. (2004) Effects of eicosanoid biosynthesis inhibitors on the prophenoloxidase-activating system and microaggregation reactions in the hemolymph of Rhodnius prolixus infected with Trypanosoma rangeli. Journal of Insect Physiology, 50(2-3), 157-165. Available from: https://doi.org/10.1016/j.jinsphys.2003.11.002. ; Garriga, A., Mastore, M., Morton, A., Garcia del Pino, F. & Brivio, M.F. (2020) Immune response of Drosophila suzukii larvae to infection with the nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila. Insects, 11(4), 210. Available from: https://doi.org/10.3390/insects11040210. ; Habineza, P., Muhammad, A., Ji, T., Xiao, R., Yin, X., Hou, Y. et al. (2019) The promoting effect of gut microbiota on growth and development of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Frontiers in Microbiology, 10, 1212. Available from: https://doi.org/10.3389/fmicb.2019.01212. ; Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1-9. Available from: The PAST homepage: http://folk.uio.no/ohammer/past/. ; Hillyer, J.F. (2016) Insect immunology and hematopoiesis. Developmental & Comparative Immunology, 58, 102-118. Available from: https://doi.org/10.1016/j.dci.2015.12.006. ; Jari, O.F., Guillaume, B., Michael, F., Roeland, K., Pierre, L., Dan, M. et al. (2016) Vegan: community ecology package. Available from: http://cran.r-project.org/package=vegan. ; Kirschman, L.J., Quade, A.H., Zera, A.J. & Warne, R.W. (2017) Immune function trade-offs in response to parasite threats. Journal of Insect Physiology, 98, 199-204. Available from: https://doi.org/10.1016/j.jinsphys.2017.01.009. ; Lemaitre, B. & Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annual Review of Immunology, 25, 697-743. Available from: https://doi.org/10.1146/annurev.immunol.25.022106.141615. ; Li, F., Li, M., Mao, T., Wang, H., Chen, J., Lu, Z. et al. (2020) Effects of phoxim exposure on gut microbial composition in the silkworm, Bombyx mori. Ecotoxicology and Environmental Safety, 189, 110011. Available from: https://doi.org/10.1016/j.ecoenv.2019.110011. ; Li, J., Ma, L., Lin, Z., Zou, Z. & Lu, Z. (2016) Serpin-5 regulates prophenoloxidase activation and antimicrobial peptide pathways in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 73, 27-37. Available from: https://doi.org/10.1016/j.ibmb.2016.04.003. ; Li, Y., Ni, M., Li, F., Zhang, H., Xu, K., Zhao, X. et al. (2016) Effects of TiO2 NPs on silkworm growth and feed efficiency. Biological Trace Element Research, 169(2), 382-386. Available from: https://doi.org/10.1007/s12011-015-0413-5. ; Lu, A., Li, X., Hillyer, J.F., Beerntsen, B.T., Söderhäll, K. & Ling, E. (2014) Recombinant Drosophila prophenoloxidase 1 is sequentially cleaved by α-chymotrypsin during in vitro activation. Biochimie, 102, 154-165. Available from: https://doi.org/10.1016/j.biochi.2014.03.007. ; Lu, A., Peng, Q. & Ling, E. (2014) Formation of disulfide bonds in insect prophenoloxidase enhances immunity through improving enzyme activity and stability. Developmental & Comparative Immunology, 44(2), 351-358. Available from: https://doi.org/10.1016/j.dci.2014.01.011. ; Marra, A., Hanson, M.A., Kondo, S., Erkosar, B. & Lemaitre, B. (2021) Drosophila antimicrobial peptides and lysozymes regulate gut microbiota composition and abundance. mBio, 12(4), e0082421. Available from: https://doi.org/10.1128/mBio.00824-21. ; Mayorga, O.L., Kingston-Smith, A.H., Kim, E.J., Allison, G.G., Wilkinson, T.J., Hegarty, M.J. et al. (2016) Temporal metagenomic and metabolomic characterization of fresh perennial ryegrass degradation by rumen bacteria. Frontiers in Microbiology, 7, 1854. Available from: https://doi.org/10.3389/fmicb.2016.01854. ; Nehme, N.T., Liégeois, S., Kele, B., Giammarinaro, P., Pradel, E., Hoffmann, J.A. et al. (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathogens, 3(11), e173. Available from: https://doi.org/10.1371/journal.ppat.0030173. ; Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences of the United Sates of America, 100(4), 1803-1807. Available from: https://doi.org/10.1073/pnas.0335320100. ; Pennacchio, F., Caccia, S. & Digilio, M.C. (2014) Host regulation and nutritional exploitation by parasitic wasps. Current Opinion in Insect Science, 6, 74-79. Available from: https://doi.org/10.1016/j.cois.2014.09.018. ; Polenogova, O.V., Kabilov, M.R., Tyurin, M.V., Rotskaya, U.N., Krivopalov, A.V., Morozova, V.V. et al. (2019) Parasitoid envenomation alters the Galleria mellonella midgut microbiota and immunity, thereby promoting fungal infection. Scientific Reports, 9(1), 4012. Available from: https://doi.org/10.1038/s41598-019-40301-6. ; Rath, S.S. & Sinha, B.R.R.P. (2005) Parasitization of fifth instar tasar silkworm, Antheraea mylitta, by the uzi fly, Blepharipa zebina; a host-parasitoid interaction and its effect on host's nutritional parameters and parasitoid development. Journal of Invertebrate Pathology, 88(1), 70-78. Available from: https://doi.org/10.1016/j.jip.2004.09.006. ; Raymann, K., Shaffer, Z. & Moran, N.A. (2017) Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biology, 15(3), e2001861. Available from: https://doi.org/10.1371/journal.pbio.2001861. ; Rossi, G.D., Salvador, G. & Cônsoli, F.L. (2014) The parasitoid, Cotesia flavipes (Cameron) (Hymenoptera: Braconidae), influences food consumption and utilization by larval Diatraea saccharalis (F.) (Lepidoptera: Crambidae): parasitism affects digestive physiology of Diatraea saccharalis. Archives of Insect Biochemistry and Physiology, 87(2), 85-94. Available from: https://doi.org/10.1002/arch.21182. ; Schlenke, T.A., Morales, J., Govind, S. & Clark, A.G. (2007) Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathogens, 3(10), e158. Available from: https://doi.org/10.1371/journal.ppat.0030158. ; Schmidt, O. (2006) At the core of parasitoid-host interactions. Archives of Insect Biochemistry and Physiology, 61(3), 107-109. Available from: https://doi.org/10.1002/arch.20110. ; Shao, Y., Arias-Cordero, E., Guo, H., Bartram, S. & Boland, W. (2014) In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS One, 9(1), e85948. Available from: https://doi.org/10.1371/journal.pone.0085948. ; Shin, S.C., Kim, S.H., You, H., Kim, B., Kim, A.C., Lee, K.A. et al. (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science, 334(6056), 670-674. Available from: https://doi.org/10.1126/science.1212782. ; Stecher, B. & Hardt, W.D. (2011) Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 14(1), 82-91. Available at https://doi.org/10.1016/j.mib.2010.10.003. ; Stireman, J.O., O'Hara, J.E. & Wood D.M. (2006) Tachinidae: evolution, behavior, and ecology. Annual Review of Entomology, 51, 525-555. Available from: https://doi.org/10.1146/annurev.ento.51.110104.151133. ; Thong-On, A., Suzuki, K., Noda, S., Inoue, J., Kajiwara, S. & Ohkuma, M. (2012) Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites. Microbes and Environments, 27(2), 186-192. Available from: https://doi.org/10.1264/jsme2.me11325. ; Vicente, C.S.L., Ozawa, S. & Hasegawa, K. (2016) Composition of the cockroach gut microbiome in the presence of parasitic nematodes. Microbes and Environments, 31(3), 314-320. Available from: https://doi.org/10.1264/jsme2.ME16088. ; Vieira, C.S., Mattos, D.P., Waniek, P.J., Santangelo, J.M., Figueiredo, M.B., Gumiel, M. et al. (2015) Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Parasites & Vectors, 8, 135. Available from: https://doi.org/10.1186/s13071-015-0736-2. ; Wang, L., Liu, H., Fu, H., Zhang, L., Guo, P., Xia, Q. et al. (2019) Silkworm serpin32 functions as a negative-regulator in prophenoloxidase activation. Developmental and Comparative Immunology, 91, 123-131. Available from: https://doi.org/10.1016/j.dci.2018.10.006. ; Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T. et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(7169), 560-565. Available from: https://doi.org/10.1038/nature06269. ; Wu, K., Yang, B., Huang, W., Dobens, L., Song, H. & Ling, E. (2016) Gut immunity in Lepidopteran insects. Developmental and Comparative Immunology, 64, 65-74. Available from: https://doi.org/10.1016/j.dci.2016.02.010. ; Xu, P.Z., Zhang, M.R., Gao, L., Wu, Y.C., Qian, H.Y., Li, G. et al. (2019) Comparative proteomic analysis reveals immune competence in hemolymph of Bombyx mori pupa parasitized by silkworm maggot Exorista sorbillans. Insects, 10(11), 413. Available from: https://doi.org/10.3390/insects10110413. ; Yang, L., Wan, B., Wang, B.B., Liu, M.M., Fang, Q., Song, Q.S. et al. (2019) The pupal ectoparasitoid Pachycrepoideus vindemmiae regulates cellular and humoral immunity of host Drosophila melanogaster. Frontiers in Physiology, 10, 1282. Available from: https://doi.org/10.3389/fphys.2019.01282. ; Yuan, Z.H., Lan, X.Q., Yang, T., Xiao, J. & Zhou, Z.Y. (2006) Investigation and analysis of the bacteria community in silkworm intestine. Wei Sheng Wu Xue Bao, 46(2), 285-291. Available from: https://pubmed.ncbi.nlm.nih.gov/16736593/. ; Zhang, X., Zhang, F. & Lu, X. (2022) Diversity and functional roles of the gut microbiota in Lepidopteran Insects. Microorganisms, 10(6), 1234. Available from: https://doi.org/10.3390/microorganisms10061234. ; Zhou, S., Lu, Y., Chen, J., Pan, Z., Pang, L., Wang, Y. et al. (2022) Parasite reliance on its host gut microbiota for nutrition and survival. The ISME Journal, 16, 2574-2586. Available from: https://doi.org/10.1038/s41396-022-01301-z.
  • Grant Information: the Science & Technology Support Program of Nantong; Natural Science Foundation of the Jiangsu Higher Education Institutions of China; a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions; the Jiangsu Agriculture Science and Technology Innovation Fund; National Natural Science Foundation of China; CARS-18
  • Contributed Indexing: Keywords: Bombyx mori; digestion and absorption; gut microbiota; tachinid parasitoid
  • Entry Date(s): Date Created: 20230320 Date Completed: 20230516 Latest Revision: 20230516
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -