Zum Hauptinhalt springen

Bacillus subtilis and B. licheniformis Isolated from Heterorhabditis indica Infected Apple Root Borer (Dorysthenes huegelii) Suppresses Nematode Production in Galleria mellonella.

Upadhyay, A ; Mohan, S
In: Acta parasitologica, Jg. 66 (2021-09-01), Heft 3, S. 989
academicJournal

Titel:
Bacillus subtilis and B. licheniformis Isolated from Heterorhabditis indica Infected Apple Root Borer (Dorysthenes huegelii) Suppresses Nematode Production in Galleria mellonella.
Autor/in / Beteiligte Person: Upadhyay, A ; Mohan, S
Zeitschrift: Acta parasitologica, Jg. 66 (2021-09-01), Heft 3, S. 989
Veröffentlichung: 2019- : Cham : Springer International Publishing ; <i>Original Publication</i>: Warszawa : Witold Stefanski Institute Of Parasitology, 2021
Medientyp: academicJournal
ISSN: 1896-1851 (electronic)
DOI: 10.1007/s11686-021-00366-8
Schlagwort:
  • Animals
  • Bacillus subtilis
  • Symbiosis
  • Malus
  • Moths
  • Nematoda
  • Photorhabdus
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Acta Parasitol] 2021 Sep; Vol. 66 (3), pp. 989-996. <i>Date of Electronic Publication: </i>2021 Mar 26.
  • MeSH Terms: Malus* ; Moths* ; Nematoda* ; Photorhabdus* ; Animals ; Bacillus subtilis ; Symbiosis
  • References: Grewal PS, Ehlers RU, Shapiro-Ilan DI (2006) Nematodes as biocontrol agents. CABI Publishing, Oxon. ; Forst S, Nealson K (1996) Molecular biology of the symbiotic–pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:1–43. (PMID: 10.1128/mr.60.1.21-43.1996) ; Forst SA, Dowds BCA, Boemare NE, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Ann Rev Microbiol. https://doi.org/10.1146/annurev.micro.51.1.47. (PMID: 10.1146/annurev.micro.51.1.47) ; Mohan S, Upadhyay A, Shrivastav A, Sreedevi K (2017) Implantation of Heterorhabditis indica-infected Galleria cadavers in soil for biocontrol of white grub infestation in sugarcane fields of Western Uttar Pradesh. Curr Sci 112(10):2016–2020. (PMID: 10.18520/cs/v112/i10/2016-2020) ; Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol. https://doi.org/10.1016/j.biocontrol.2005.11.005. (PMID: 10.1016/j.biocontrol.2005.11.005234829933578470) ; Mohan S, Upadhyay A, Khajuria DR (2017) Susceptibility of Heterohrhabditis indica and Steinernema abbassi to pre and post overwintering stages of apple root borer. Ann Plant Prot Sci 25(2):449–451. ; Shapiro-Ilan DI, Gaugler R, Tedders WL, Brown I et al (2002) Optimization of inoculation for in vivo production of entomopathogenic nematodes. J Nematol 34:343–350. (PMID: 192659542620594) ; Nielsen O, Philipsen H (2004) Seasonal population dynamics of inoculated and indigenous steinernematid nematodes in an organic cropping system. Nematology 6:901–909. (PMID: 10.1163/1568541044038588) ; Susurluk A, Ehlers RU (2008) Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. Biol Control 53(627):641. ; Harvey CD, Alameen KM, Griffin CT (2012) The impact of entomopathogenic nematodes on a non–target, service–providing long horn beetle is limited by targeted application when controlling forestry pest Hylobius abietis. Biol Control 62:173–182. (PMID: 10.1016/j.biocontrol.2012.04.002) ; Hodson AK, Siegel JP, Lewis EE (2012) Ecological influence of the entomopathogenic nematode, Steinernema carpocapsae, on pistachio orchard soil arthropods. Pedobiologia 55:51–58. (PMID: 10.1016/j.pedobi.2011.10.005) ; Brown IM, Gaugler R (1996) Cold tolerance of steinernematid and heterorhabitid nematodes. J Therm Biol 21:115–121. (PMID: 10.1016/0306-4565(95)00033-X) ; Kaya HK (2002) Natural enemies and other antagonists. In: Gaugler R (ed) Entomopathogenic nematology. CAB International, Wallingford, pp 189–203. (PMID: 10.1079/9780851995670.0189) ; Wollenberg AC, Jagdish T, Slough G, Hoinville ME, Wollenberg MS (2016) Death becomes them: bacterial community dynamics and stilbene antibiotic production in Galleria mellonella cadavers killed by Heterorhabditis/Photorhabdus. Appl Environ Microbiol 82(19):5824–5837. (PMID: 10.1128/AEM.01211-16) ; Cambon MC, Lafont P, Frayssinet M, Lanois A et al (2020) Bacterial community profile after the lethal infection of Steinernema-Xenorhabdus pairs into soil-reared Tenebrio molitor larvae. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiaa009. (PMID: 10.1093/femsec/fiaa00931942980) ; Ogier JC, Pagès S, Frayssinet M et al (2020) Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Microbiome. https://doi.org/10.1186/s40168-020-00800-5. (PMID: 10.1186/s40168-020-00800-5320937747041241) ; Upadhyay A, Mohan S (2020) In-vivo production of EPNs suppressed by asymptomatic bacterial contaminants. Nematology. https://doi.org/10.1163/15685411-bja10001. (PMID: 10.1163/15685411-bja10001) ; Upadhyay A, Banakar P, Mohan S (2019) 16S rDNA based identification of non-symbiotic bacteria isolated from H. indica cuticle and infected G. mellonella and D. huegelii cadavers. Indian J Nematol 49(1):91–96. ; Mohan S, Upadhyay A, Banakar P, Rao U (2013) Molecular characterization of an indigenous isolate of Heterorhabditis pathogenic to white grubs. Proceeding of national symposium on nematode: a friend and foe of agri-horticultural crops 2013 November 21–23. YSP University, Solan, HP, pp-48. ; Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gener Microbiol. https://doi.org/10.1099/00221287-121-2-303. (PMID: 10.1099/00221287-121-2-303) ; Han RC, Ehlers RU (2001) Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiol Ecol 35:239–247. (PMID: 10.1111/j.1574-6941.2001.tb00809.x) ; Lunau S, Schmidt-Peisker AL, Ehlers RU (1993) Establishment of monoxenic inocula for scaling up in vitro cultures of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis spp. Nematologica 39:385–399. (PMID: 10.1163/187529293X00330) ; Jarosz J (1996) Ecology of antimicrobials produced by bacterial association of Steinernema carpocapsae and Heterorhabditis bacteriophora. Parasitology. https://doi.org/10.1017/S0031182000066129. (PMID: 10.1017/S00311820000661298684829) ; Webster JM, Chen G, Hu K, Li J (2002) Bacterial metabolites. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, New York, pp 99–114. (PMID: 10.1079/9780851995670.0099) ; Abriouel H, Franz CMAP, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. https://doi.org/10.1111/j.1574-6976.2010.00244.x. (PMID: 10.1111/j.1574-6976.2010.00244.x20695901) ; Ramachandran R, Chalasani AG, Lal R et al (2014) A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1. Sci World J. https://doi.org/10.1155/2014/968487. (PMID: 10.1155/2014/968487) ; Fan B, Blom J, Klenk HP, Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00022. (PMID: 10.3389/fmicb.2017.00022293755145733102) ; Caulier S, Nannan C, Annika Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Mol Microbiol. https://doi.org/10.3389/fmicb.2019.00302. (PMID: 10.3389/fmicb.2019.00302) ; Geetha I, Manonmani AM (2010) Surfactin: a novel mosquitocidal biosurfactant produced by Bacillus subtilis ssp. subtilis (VCRC B471) and influence of abiotic factors on its pupicidal efficacy. Lett Appl Microbiol. https://doi.org/10.1111/j.1472-765X.2010.02912.x. (PMID: 10.1111/j.1472-765X.2010.02912.x20796211) ; Manonmani AM, Geetha I, Bhuvaneswari S (2011) Enhanced production of mosquitocidal cyclic lipopeptide from Bacillus subtilis subsp. subtilis. Indian J Med Res 134(4):476–482. (PMID: 220896103237246) ; Abd El-Salam AME, Nemat AM, Magdy A (2011) Potency of Bacillus thuringiensis and Bacillus subtilis against the cotton leaf worm, Spodoptera littoralis (Bosid.) Larvae. Arch Phytopathol Plant Prot. https://doi.org/10.1080/03235400902952129. (PMID: 10.1080/03235400902952129) ; Ghribi D, Abdelkefi L, Boukadi H, Elleuch M, Ellouze-Chaabouni S, Tounsi S (2011) The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J Invertebr Pathol. https://doi.org/10.1016/j.jip.2011.10.014. (PMID: 10.1016/j.jip.2011.10.01422079884) ; Ghribi D, Elleuch M, Abdelkefi LM, Ellouze-Chaabouni S (2012) Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. J Stored Prod Res. https://doi.org/10.1016/j.jspr.2011.10.002. (PMID: 10.1016/j.jspr.2011.10.002) ; Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Narayanan SS, Sengottayan SN (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm, Spodoptera litura Fab. Pestic Biochem Physiol. https://doi.org/10.1016/j.pestbp.2012.07.002. (PMID: 10.1016/j.pestbp.2012.07.002) ; Mnif I, Elleucha M, Chaabouni SE, Ghribia D (2013) Bacillus subtilis SPB1 biosurfactant: production optimization and insecticidal activity against the carob moth Ectomyelois ceratoniae. Crop Prot 50:66–72. (PMID: 10.1016/j.cropro.2013.03.005) ; Assié LK, Deleu M, Arnaud L, Paquot M, Thonart P, Gaspar C, Haubruge E (2002) Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67(3):647–655. (PMID: 12696433) ; van Lenteren JC, Bolckmans K, Kohl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. Biol Control. https://doi.org/10.1007/s10526-017-9801-4. (PMID: 10.1007/s10526-017-9801-4) ; Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50(1):103–111. (PMID: 10.1007/s12275-012-1343-y) ; Eleftherianos I, Marokhazi J, Millichap PJ, Hodgkinson AJ, Sriboonlert A et al (2006) Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem Mol Biol. https://doi.org/10.1016/j.ibmb.2006.04.001. (PMID: 10.1016/j.ibmb.2006.04.00116731347) ; Freitak D, Wheat CW, Heckel DG, Vogel H (2007) Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol. https://doi.org/10.1186/1741-7007-5-56. (PMID: 10.1186/1741-7007-5-56181546502235825) ; Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97:752–756. (PMID: 10.1093/jee/97.3.752) ; Miyashita A, Takahashi S, Ishii K, Sekimizu K, Kaito C (2015) Primed immune responses triggered by ingested bacteria lead to systemic infection tolerance in silkworms. PLoS ONE. https://doi.org/10.1371/journal.pone.0130486. (PMID: 10.1371/journal.pone.0130486266409504671728) ; Saad BM, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol. https://doi.org/10.1016/j.cub.2006.04.047. (PMID: 10.1016/j.cub.2006.04.047) ; Patrnogic J, Castillo JC, Shokal U, Yadav S, Kenney E, Heryanto C, Ozakman Y, Eleftherianos I (2018) Preexposure to non-pathogenic bacteria does not protect Drosophila against the entomopathogenic bacterium Photorhabdus. PLoS ONE. https://doi.org/10.1371/journal.Pone.,0205256. (PMID: 10.1371/journal.Pone.,0205256303798246209181) ; Boemare N (2002) Biology, taxonomy and systematics of Photorhabdus Xenorhabdus. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 35–56. (PMID: 10.1079/9780851995670.0035) ; Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Microbiol Biotechnol. https://doi.org/10.1007/s002530100711. (PMID: 10.1007/s002530100711) ; Poinar GO Jr, Thomas GM, Lighthart B (1990) Bioassay to determine the effect of commercial preparation of Bacillus thuringiensis on entomogenous rhabditoid nematodes. Agr Ecosyst Environ 30:195–202. (PMID: 10.1016/0167-8809(90)90105-M) ; Poinar GO Jr (1988) A microsporidian parasite of Neoaplectana glaseri and (Steinernematidae: Rhabditida). Revue de Nematologie 11:359–360. ; Blackburn MB, Farrar RR, Gundersen-Rindal DE, Martin PAW, Lawrence SD (2007) Reproductive failure of Heterorhabditis marelatus in the Colorado potato beetle: evidence of stress on the nematode symbiont Photorhabdus temperata, and potential interference from the enteric bacteria of the beetle. Biol Control 42:207–215. (PMID: 10.1016/j.biocontrol.2007.04.008) ; Blackburn MB, Gunderen-Rindal DE, Weber DC, Martin PAW, Farrar RR (2008) Enteric bacteria of field-collected Colorado potato beetle larvae inhibit growth of the entomopathogens Photorhabdus temperata and Beauveria bassiana. Biol Control. https://doi.org/10.1016/j.biocontrol.2008.05.005. (PMID: 10.1016/j.biocontrol.2008.05.005) ; Kamra A, Mohan S (2011) Antagonistic effect of Pseudomonas fluorescens Migula 1895 on the entomopathogenic nematode, Heterorhabditis indica. Indian J Nematol 21(1):225–229. ; Clarke DJ (2008) Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol. https://doi.org/10.1111/j.1462-5822.2008.01209.x. (PMID: 10.1111/j.1462-5822.2008.01209.x18647173) ; Goodrich-Blair H, Clarke DJ (2014) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Adv Appl Microbiol. https://doi.org/10.1016/B978-0-12-800260-5.00001-2. (PMID: 10.1016/B978-0-12-800260-5.00001-2) ; Han RC, Cao L, He X, Li Q et al (2000) Recovery response of Heterorhabditis bacteriophora and Steinernema carpocapsae to different non-symbiotic microorganisms. Entomol Sin. https://doi.org/10.1111/j.1744-7917.2000.tb00419.x. (PMID: 10.1111/j.1744-7917.2000.tb00419.x)
  • Grant Information: 76/150 (TG1580) Ajay Biotech India Limited
  • Contributed Indexing: Keywords: B. licheniformis; Bacillus. subtilis; G. mellonella; H. indica; P. luminescens; Re-cycling; Symbiosis
  • Entry Date(s): Date Created: 20210326 Date Completed: 20210831 Latest Revision: 20210831
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -